Forum

Manuscripts on this dataset

  1. CMS Manager

    Manuscripts on this dataset, "ds003478"
  2. CMS Manager

    1. НН Шушарина, Сравнительный анализ эффективности трансферного обучения по обобщенным данным ЭЭГ для использования в задаче диагностики депрессии, Известия высших учебных заведений. Прикладная нелинейная динамика, 2025, Cited by 0, https://cyberleninka.ru/article/n/sravnitelnyy-analiz-effektivnosti-transfernogo-obucheniya-po-obobschennym-dannym-eeg-dlya-ispolzovaniya-v-zadache-diagnostiki
    2. Y Wang, N Huang, N Mammone, M Cecchi, LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection, arXiv preprint arXiv:2502.01678, 2025, Cited by 0, https://arxiv.org/abs/2502.01678
    3. NN Shusharina, Comparative analysis of transfer learning performance on generalised eeg data for use in a depression diagnosis task, Izvestiya VUZ. Applied Nonlinear Dynamics, 2025, Cited by 0, https://journals.rcsi.science/0869-6632/article/view/278988
    4. C Peres da Silva, S Tedesco, B O'Flynn, EEG datasets for healthcare: A scoping review, 2024, Cited by 0, https://cora.ucc.ie/items/e4c14a93-4db4-4788-852e-1c9e44132270
    5. НН Шушарина, Методика сбора, записи и разметки биофизических мультимодальных данных при исследовании психоэмоциональных состояний человека, Известия Саратовского университета. Новая серия. Серия Физика, 2024, Cited by 0, https://cyberleninka.ru/article/n/metodika-sbora-zapisi-i-razmetki-biofizicheskih-multimodalnyh-dannyh-pri-issledovanii-psihoemotsionalnyh-sostoyaniy-cheloveka
    6. CP Da Silva, S Tedesco, B O'Flynn, EEG datasets for healthcare: a scoping review, IEEE Access, 2024, Cited by 5, https://ieeexplore.ieee.org/abstract/document/10466559/
    7. E Tatti, A Cinti, A Serbina, A Luciani, G D'Urso, Resting-State EEG Alterations of Practice-Related Spectral Activity and Connectivity Patterns in Depression, Biomedicines, 2024, Cited by 1, https://www.mdpi.com/2227-9059/12/9/2054
    8. НН ШУШАРИНА, Учредители: Саратовский национальный исследовательский государственный университет им. НГ Чернышевского, ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ, 2024, Cited by 0, https://elibrary.ru/item.asp?edn=EOIBSY
    9. A Quartarone, MF Ghilardi, Resting-State EEG Alterations of Practice-Related Spectral Activity and Connectivity Patterns in Depression, 2024, Cited by 0, https://www.preprints.org/manuscript/202407.2337/download/final_file
    10. NN Shusharina, Efficiency of convolutional neural networks of different architecture for the task of depression diagnosis from EEG data, Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, Cited by 0, https://journals.rcsi.science/0869-6632/article/view/260946
    11. H Lin, J Fang, J Zhang, X Zhang, W Piao, Y Liu, Resting-state electroencephalogram depression diagnosis based on traditional machine learning and deep learning: A comparative analysis, Sensors, 2024, Cited by 2, https://www.mdpi.com/1424-8220/24/21/6815
    12. Z Yuan, F Shen, M Li, Y Yu, C Tan, Y Yang, BrainWave: A Brain Signal Foundation Model for Clinical Applications, arXiv preprint arXiv:2402.10251, 2024, Cited by 3, https://arxiv.org/abs/2402.10251
    13. НН Шушарина, Эффективность сверточных нейронных сетей различной архитектуры для задачи диагностики депрессии по данным ЭЭГ, Известия высших учебных заведений. Прикладная нелинейная динамика, 2024, Cited by 0, https://cyberleninka.ru/article/n/effektivnost-svertochnyh-neyronnyh-setey-razlichnoy-arhitektury-dlya-zadachi-diagnostiki-depressii-po-dannym-eeg
    14. NN Shusharina, Methodology of collection, recording and markup of biophysical multimodal data in the study of human psychoemotional states, Izvestiya of Saratov University. Physics, 2024, Cited by 0, https://journals.rcsi.science/1817-3020/article/view/265415
    15. G Luo, H Rao, P An, Y Li, R Hong, Exploring adaptive graph topologies and temporal graph networks for EEG-based depression detection, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, Cited by 9, https://ieeexplore.ieee.org/abstract/document/10268256/
    16. D Sihn, JS Kim, OS Kwon, SP Kim, Breakdown of long-range spatial correlations of infraslow amplitude fluctuations of EEG oscillations in patients with current and past major depressive disorder, Frontiers in Psychiatry, 2023, Cited by 5, https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1132996/full
    17. J Chang, Y Choi, Depression diagnosis based on electroencephalography power ratios, Brain and Behavior, 2023, Cited by 12, https://onlinelibrary.wiley.com/doi/abs/10.1002/brb3.3173
    18. X Sun, Y Xu, Y Zhao, X Zheng, Multi-granularity graph convolution network for major depressive disorder recognition, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, Cited by 8, https://ieeexplore.ieee.org/abstract/document/10238750/
    19. N Shusharina, D Yukhnenko, S Botman, V Sapunov, Modern methods of diagnostics and treatment of neurodegenerative diseases and depression, Diagnostics, 2023, Cited by 54, https://www.mdpi.com/2075-4418/13/3/573
    20. V Savinov, V Sapunov, N Shusharina, Research and selection of the optimal neural network architecture and parameters for depression classification using harmonized datasets, 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN), 2022, Cited by 1, https://ieeexplore.ieee.org/abstract/document/9912567/
    21. NP Tigga, S Garg, Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals, Health Information Science and Systems, 2022, Cited by 22, https://link.springer.com/article/10.1007/s13755-022-00205-8
    22. N Draudt, BATS: Development of a Biosignal Analysis Toolkit and Pipeline for Polytrauma Research, 2022, Cited by 0, https://digital.wpi.edu/downloads/5t34sp28g
    23. C Hung, The Impact of Cross-Validation on the Automated EEG-Based Diagnosis, 2022, Cited by 0
    24. V Savinov, V Sapunov, N Shusharina, EEG-based depression classification using harmonized datasets, 2021 Third International Conference Neurotechnologies and Neurointerfaces (CNN), 2021, Cited by 7, https://ieeexplore.ieee.org/abstract/document/9580293/
    25. L Minkowski, Classifying Severity of Depression and Anxiety by Analyzing Electroencephalography (EEG) Signals for Neurophysiological Biomarkers, 2021, Cited by 0, https://rshare.library.torontomu.ca/ndownloader/files/43269018
    26. M Zhao, K Cui, M Marino, F Tian, M Hu, Identifying Electroencephalography Microstates with Deep Learning Models for Online Applications, Available at SSRN 5157705, Cited by 0, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5157705
    27. Y Zhou, X Yu, H Lin, R Li, J Liang, X Shi, Depression Severity Identification Based on Shallow 2d Self-Attention-Cnn Using Eeg Functional Connectivity Network, Available at SSRN 4945098, Cited by 0, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4945098
    28. R Zheng, D Zhang, Z Yuan, J Chen, Y Yang, Beatrix: Out-of-Distribution Generalization of Large EEG Model via Invariant Contrastive Fine-Tuning, Cited by 0, https://openreview.net/forum?id=IjBndR92Zy

Add Post

User photo

You must be logged in to comment.

Please keep comments polite and on topic. Offensive posts may be removed.